Microhardness testing services in Chelmsford today? Analysis and Results: The submitted bottle was examined for signs of interior distress, and the water from the bottle was removed and maintained. Some of the suspended particulate was filtered and examined non-destructively by light microscopy first, to characterize the material. A low magnification stereo microscope image of the filtered white particulate is shown in the image above. From this image, biological tissues were ruled out, and the material was observed to be crystalline. Polarized light microscopy (PLM) was used to analyze the sample next. From this examination, the material showed birefringence as shown in the PLM image on the right. The PLM Image Stereo Microscope image suspect material showed optical properties and morphology dissimilar to common carbonates and sulfates. It was determined to be a birefringent crystalline material, but it could not be identified using only PLM methods. Therefore, analysis using scanning electron microscopy with energy dispersive x-ray spectroscopy (SEM-EDS) would have to be performed to obtain further information about the suspect material.
Light microscopy allows for the examination of optical and structural properties of a variety of samples. Optical properties such as polarization and birefringence help to differentiate between fibers, minerals, ceramics, biological materials and opaque materials including paints, coatings and metallic particles. This allows a wide range of particles to be quickly and effectively identified and quantified by an experienced analyst.
What if I want a service not listed in your services list? At MicroVision Labs the list of services which we provide to our clients is constantly growing. So if you don’t see what you are looking for give us a call or use the Contact Us tab. Also don’t forget to check our Additional Services Page to see if it might be listed there. Can you identify a contamination or unknown for us? Yes, we call that an Unknown Material ID and we routinely work on that kind of project. We have a number of individual tests designed to classify unknown materials. When combined with our extensive suite of equipment, these tests allow us to identify virtually any material. Give us a call and talk to one of our knowledgeable staff for more information. See more details on microvision labs website. We partner with companies in all phases of product development and sales, including R&D, manufacturing, QC, advertising and failure analysis. Our laboratory offers a highly-trained and experienced staff utilizing a powerful set of analytical tools (SEM with EDS and backscatter detectors, Bruker X-Flash elemental mapping, X-Ray imaging, Micro-FTIR spectroscopy, Micro-XRF, light microscopy, cross sectioning/precision polishing and microhardness testing).
Examining the sample with a polarized light microscope (PLM), it was darker and coarser than expected for a mold sample. The dust appeared to be a closed cell, synthetic blown foam material, and all from the same source. The black color was likely due to pigment particles added to color the foam. Fourier Transform Infra-Red spectroscopy was performed on the foam particles. The spectrum showed a mixture of spectral features, associated with vinyl acetates, polyurethane, and cellulose or other sugar-like polymers. Based on these features, a common urethane acetate foam was determined as the likely source material.
The desired chip packages were sectioned from the larger board, and placed in an epoxy mounting cup. The epoxy was mixed and allowed to harden. The resulting epoxy puck was cross sectioned and polished. The epoxy mounting and cross sectioning process gave precise, perfectly preserved cross sectional surfaces through the desired components and their solder bonds. Discover even more details at https://microvisionlabs.com/.